4.6 Article

Photometric redshifts with the Multilayer Perceptron Neural Network: Application to the HDF-S and SDSS

期刊

ASTRONOMY & ASTROPHYSICS
卷 423, 期 2, 页码 761-776

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20040176

关键词

galaxies : distances and redshifts; methods : data analysis; techniques : photometric

向作者/读者索取更多资源

We present a technique for the estimation of photometric redshifits based on feed-forward neural networks. The Multilayer Perceptron (MLP) Artificial Neural Network is used to predict photometric redshifts in the HDF-S from an ultra deep-multicolor catalog. Various possible approaches for the training of the neural network are explored, including the deepest and most complete spectroscopic redshift catalog currently available (the Hubble Deep Field North dataset) and models of the spectral energy distribution of galaxies available in the literature. The MLP can be trained on observed data, theoretical data and mixed samples. The prediction of the method is,tested on the spectroscopic sample in the HDF-S (44 galaxies). Over the entire redshift range, 0.1 < z < 3.5, the agreement between the photometric and spectroscopic redshifts in the HDF-S is good: the training on mixed data produces sigma(z)(test) similar or equal to 0.11, showing that model libraries together with observed data provide a sufficiently complete description of the galaxy population. The neural system capability is also tested in a low redshift regime, 0 < z < 0.4, using the Sloan Digital Sky Survey Data Release One (DR1) spectroscopic sample. The resulting accuracy on 88 108 galaxies is sigma(z)(test) similar or equal to 0.022. Inputs other than galaxy colors - such as morphology, angular size and surface brightness - may be easily incorporated in the neural network technique. An important feature, in view of the application of the technique to large databases, is the computational speed: in the evaluation phase, redshifts of 10(5)galaxies are estimated in few seconds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据