4.6 Article

Magnetic Rayleigh-Taylor instability for Pulsar Wind Nebulae in expanding Supernova Remnants

期刊

ASTRONOMY & ASTROPHYSICS
卷 423, 期 1, 页码 253-265

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20040360

关键词

instabilities-magnetohydrodynamics (MHD); stars : pulsars : general; stars : winds, outflows; ISM : supernova remnants

向作者/读者索取更多资源

We present a numerical investigation of the development of Rayleigh-Taylor instability at the interface between an expanding Pulsar Wind Nebula and its surrounding Supernova Remnant. These systems have long been thought to be naturally subject to this kind of instability, given their expansion behavior and the density jump at the contact discontinuity. High resolution images of the Crab Nebula at optical frequencies show the presence of a complex network of line-emitting filaments protruding inside the synchrotron nebula. These structures are interpreted as the observational evidence that Rayleigh-Taylor instability is in fact at work. The development of this instability in the regime appropriate to describe Supernova Remnant-Pulsar Wind Nebula systems is non-trivial. The conditions at the interface are likely close to the stability threshold, and the inclusion of the nebular magnetic field, which might play an important role in stabilizing the system, is essential to the modeling. If Rayleigh-Taylor features can grow efficiently a mixing layer in the outer portion of the nebula might form where most of the supernova material is confined. When a magnetic field close to equipartition is included we find that the interface is stable, and that even a weaker magnetic field affects Substantially the growth and shape of the fingers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据