4.4 Article

Drug targeting of HIV-1 RNA-DNA hybrid structures: Thermodynamics of recognition and impact on reverse transcriptase-mediated ribonuclease H activity and viral replication

期刊

BIOCHEMISTRY
卷 43, 期 30, 页码 9732-9742

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi0497345

关键词

-

资金

  1. NCI NIH HHS [CA097123] Funding Source: Medline
  2. NIGMS NIH HHS [GM60484, GM48802, GM31483] Funding Source: Medline

向作者/读者索取更多资源

RNA degradation via the ribonuclease H (RNase H) activity of human immunodeficiency virus type I (HIV-1) reverse transcriptase (RT) is a critical component of the reverse transcription process. In this connection, mutations of RT that inactivate RNase H activity result in noninfectious virus particles. Thus, interfering with the RNase H activity of RT represents a potential vehicle for the inhibition of HIV-1 replication. Here, we demonstrate an approach for inhibiting the RNase H activity of HIV-1 RT by targeting its RNA-DNA hybrid substrates. Specifically, we show that the binding of the 4,5-disubstituted 2-deoxystreptamine aminoglycosides, neomycin, paromomycin, and ribostamycin, to two different chimeric RNA-DNA duplexes, which mimic two distinct intermediates in the reverse transcription process, inhibits specific RT-mediated RNase H cleavage, with this inhibition being competitive in nature. UV melting and isothermal titration calorimetry studies reveal a correlation between the relative binding affinities of the three drugs for each of the chimeric RNA-DNA host duplexes and the relative extents to which the drugs inhibit RT-mediated RNase H cleavage of the duplexes. Significantly, this correlation also extends to the relative efficacies with which the drugs inhibit HIV-1 replication. In the aggregate, our results highlight a potential strategy for AIDS chemotherapy that should not be compromised by the unusual genetic diversity of HIV-1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据