4.8 Article

Preferential cleavage of chromatin-bound cohesin after targeted phosphorylation by Polo-like kinase

期刊

EMBO JOURNAL
卷 23, 期 15, 页码 3144-3153

出版社

WILEY
DOI: 10.1038/sj.emboj.7600303

关键词

chromosome segregation; cohesin cleavage; Polo-like kinase; Scc1; separase

向作者/读者索取更多资源

The final irreversible step in the duplication and dissemination of eukaryotic genomes takes place when sister chromatid pairs split and separate in anaphase. This is triggered by the protease separase that cleaves the Scc1 subunit of 'cohesin', the protein complex responsible for holding sister chromatids together in metaphase. Only part of cellular cohesin is bound to chromosomes in metaphase, and it is unclear whether and how separase specifically targets this fraction for cleavage. We established an assay to compare cleavage of chromatin-bound versus soluble budding yeast cohesin. Scc1 in chromosomal cohesin is significantly preferred by separase over Scc1 in soluble cohesin. The difference is most likely due to preferential phosphorylation of chromatin-bound Scc1 by Polo-like kinase. Site-directed mutagenesis of 10 Polo phosphorylation sites in Scc1 slowed cleavage of chromatin-bound cohesin, and hyperphosphorylation of soluble Scc1 by Polo overexpression accelerated its cleavage to levels of chromosomal cohesin. Polo is bound to chromosomes independently of cohesin's presence, providing a possible explanation for chromosome-specific cohesin modification and targeting of separase cleavage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据