4.7 Article

Statistical modeling of sequencing errors in SAGE libraries

向作者/读者索取更多资源

Motivation: Sequencing errors may bias the gene expression measurements made by Serial Analysis of Gene Expression (SAGE). They may introduce non-existent tags at low abundance and decrease the real abundance of other tags. These effects are increased in the longer tags generated in Long-SAGE libraries. Current sequencing technology generates quite accurate estimates of sequencing error rates. Here we make use of the sequence neighborhood of SAGE tags and error estimates from the base-calling software to correct for such errors. Results: We introduce a statistical model for the propagation of sequencing errors in SAGE and suggest an Expectation-Maximization (EM) algorithm to correct for them given observed sequences in a library and base-calling error estimates. We tested our method using simulated and experimental SAGE libraries. When comparing SAGE libraries, we found that sequencing errors can introduce considerable bias. High abundance tags may be falsely called as significantly differentially expressed, especially when comparing libraries with different levels of sequencing errors and/or of different size. Truly, differentially expressed tags have decreased significance as 'true'-tag counts are generally underestimated. This may alter if tags near the threshold of differential expression are called significant. Moreover, the number of different transcripts present in a library is overestimated as false tags are introduced at low abundance. Our correction method adjusts the tag counts to be closer to the true counts and is able to partly correct for biases introduced by sequencing errors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据