4.6 Article

Response of the soil fungal community to multi-factor environmental changes in a temperate forest

期刊

APPLIED SOIL ECOLOGY
卷 81, 期 -, 页码 45-56

出版社

ELSEVIER
DOI: 10.1016/j.apsoil.2014.04.008

关键词

Fungal community; Nitrogen fertilization; Soil water control; Altitude; Denaturing gradient gel electrophoresis; DNA sequencing

资金

  1. National Basic Research Program (973 Program) of China [2010CB833502]
  2. National Natural Science Foundation of China [30870376]
  3. State Key Laboratory of Forest and Soil Ecology [LFSE 2013-08]

向作者/读者索取更多资源

Both environmental and climatic changes are known to influence soil microbial biomes in terrestrial ecosystems. However, there are limited data defining the interactive effects of multi-factor environmental disturbances, including N-deposition, precipitation, and air temperature, on soil fungal communities in temperate forests. A 3-year outdoor pot experiment was conducted to examine the temporal shifts of soil fungal communities in a temperate forest following N-addition, precipitation and air temperature changes. The shifts in the structure and composition of soil fungal communities were characterized by denaturing gradient gel electrophoresis and DNA sequencing. N-addition regimen induced significant alterations in the composition of soil fungal communities, and this effect was different at both higher and lower altitudes. The response of the soil fungal community to N-addition was much stronger in precipitation-reduced soils compared to soils experiencing enhanced precipitation. The combined treatment of N-addition and reduced precipitation caused more pronounced changes in the lower altitude versus those in the higher one. Certain fungal species in the subphylum Pezizomycotina and Saccharomycotina distinctively responded to N fertilization and soil water control at both altitudes. Redundancy discrimination analysis showed that changes in environmental factors and soil physicochemical properties explained 43.7% of the total variability in the soil fungal community at this forest ecosystem. Variations in the soil fungal community were significantly related to the altitude, soil temperature, total soil N content (TN) and pH value (P<0.05). We present evidence for the interactive effects of N-addition, water manipulation and air temperature to reshape soil fungal communities in the temperate forest. Our data could provide new insights into predicting the response of soil micro-ecosystem to climatic changes. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据