4.6 Article

RAFTK/Pyk2 activation is mediated by trans-acting autophosphorylation in a Src-independent manner

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 32, 页码 33315-33322

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M313527200

关键词

-

资金

  1. NCI NIH HHS [CA97153] Funding Source: Medline
  2. NIAMS NIH HHS [K18 PAR-02-069] Funding Source: Medline
  3. NINDS NIH HHS [NS39558] Funding Source: Medline

向作者/读者索取更多资源

The related adhesion focal tyrosine kinase ( RAFTK), also known as Pyk2, undergoes autophosphorylation upon its stimulation. This leads to cascades of intracellular signaling that result in the regulation of various cellular activities. However, the molecular mechanism of RAFTK autophosphorylation is not yet known. Using various RAFTK constructs fused with two different tags, we found that the autophosphorylation of RAFTK was mediated by a trans-acting mechanism, not a cis-acting mechanism. In addition, overexpression of kinase-mutated RAFTK inhibited wild type RAFTK autophosphorylation in a dose-dependent manner by a trans-acting interaction. Trans-acting autophosphorylation was also observed between endogenous and exogenous RAFTK upon potassium depolarization of neuroendocrine PC12 cells. Using immunoprecipitation and affinity chromatography, we detected RAFTK self-association that was not affected by deletion of a single region or domain of RAFTK. Furthermore, RAFTK autophosphorylation occurred only at site Tyr(402) in a Src kinase activity-independent manner. However, Src significantly enhanced RAFTK-mediated paxillin phosphorylation, suggesting a key role for Src in RAFTK activation and phosphorylation of downstream substrates. Our results indicate that the activation of RAFTK occurs in several steps. First, upon stimulus, RAFTK trans-autophosphorylates Tyr(402). Second, phosphorylated Tyr(402) recruits and activates Src kinase that in turn phosphorylates RAFTK and enhances its kinase activity. Lastly, the enhanced RAFTK activity induces the activation of downstream signaling molecules. Taken together, these studies provide insights into the molecular mechanism of RAFTK autophosphorylation and the specific role of Src in the regulation of RAFTK activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据