4.6 Article

Multiple threshold percolation in polymer/filler composites

期刊

JOURNAL OF PHYSICS D-APPLIED PHYSICS
卷 37, 期 15, 页码 2160-2169

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/37/15/018

关键词

-

向作者/读者索取更多资源

Local variations in filler particle concentration and/or shape and orientation in static filler/polymer composites are modelled as distributions of percolation thresholds. The concentration variations can be due to insufficient mixing, formation of semicrystalline voids during cooling from the melt, shrinkage during polymer curing, flow during physical compression or the like. Irregular filler shapes, especially elongated shapes, reduce the percolation threshold; thus, natural variations in the shapes and orientations of filler particle aggregates lead to locally varying percolation thresholds. A distribution of percolation thresholds leads to an apparent average percolation threshold based on the conductivity below the mean percolation threshold. For filler concentrations above the apparent percolation threshold, the dielectric constant continues to increase before reaching a lowered peak value at the mean percolation threshold and then decreasing. This can explain some 'anomalous' published experimental results concerning the dielectric constant just above the percolation threshold. In the frequency plane, the percolation threshold distribution can lead to a slight reduction of the apparent critical exponents x and y of the frequency dependencies of the conductivity and relative dielectric constant, respectively. Our experimental results on ethylene butylacrylate copolymer/carbon black composites support the theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据