4.4 Article

Mutational analysis of protein splicing, cleavage, and self-association reactions mediated by the naturally split Ssp DnaE intein

期刊

BIOCHEMISTRY
卷 43, 期 31, 页码 10265-10276

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi0494065

关键词

-

向作者/读者索取更多资源

The ability to separately purify the naturally split Synechocystis sp. PCC6803 (Ssp) DnaE intein domains has allowed detailed examination of both universal and Ssp DnaE intein-specific steps in the protein splicing pathway. By engineering substitutions at both the +1 and penultimate intein positions, we have further characterized intein reaction kinetics in this system. Replacement of the crucial +1Cys with serine decreased N-terminal cleavage and trans-splicing rates; however, this substitution did not prevent splicing or the ability of ZnCl2 to inhibit it. Substitution of the penultimate intein residue (alanine) with a typically conserved histidine did not increase the rate or extent of trans-splicing or cleavage under typical assay conditions. Despite the observation that this histidine aids in asparagine cyclization for other inteins, it did not encourage C-terminal cleavage for the Ssp DnaE intein or uncouple it from N-terminal cleavage. Both the +1Ser and Ala to His mutants were insensitive to ZnCl2 during trans-cleavage experiments, uncoupling a previously linked inhibition in asparagine cyclization from an inhibition in trans-thioesterification detected for the wild-type intein.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据