4.8 Article

Self-assembly of amphiphilic dendritic dipeptides into helical pores

期刊

NATURE
卷 430, 期 7001, 页码 764-768

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02770

关键词

-

向作者/读者索取更多资源

Natural pore-forming proteins act as viral helical coats(1) and transmembrane channels(2-4), exhibit antibacterial activity(5) and are used in synthetic systems, such as for reversible encapsulation(6) or stochastic sensing(7). These diverse functions are intimately linked to protein structure(1-4). The close link between protein structure and protein function makes the design of synthetic mimics a formidable challenge, given that structure formation needs to be carefully controlled on all hierarchy levels, in solution and in the bulk. In fact, with few exceptions(8,9), synthetic pore structures capable of assembling into periodically ordered assemblies that are stable in solution and in the solid state(10-13) have not yet been realized. In the case of dendrimers, covalent(14) and non- covalent(15) coating and assembly of a range of different structures(15-17) has only yielded closed columns(18). Here we describe a library of amphiphilic dendritic dipeptides that self-assemble in solution and in bulk through a complex recognition process into helical pores. We find that the molecular recognition and self-assembly process is sufficiently robust to tolerate a range of modifications to the amphiphile structure, while preliminary proton transport measurements establish that the pores are functional. We expect that this class of self-assembling dendrimers will allow the design of a variety of biologically inspired systems with functional properties arising from their porous structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据