4.7 Article

Early breakthrough of colloids and bacteriophage MS2 in a water-saturated sand column

期刊

WATER RESOURCES RESEARCH
卷 40, 期 8, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2003WR002676

关键词

colloid; saturated flow; size exclusion; Peclet number; dispersion; dispersivity

向作者/读者索取更多资源

We conducted column-scale experiments to observe the effect of transport velocity and colloid size on early breakthrough of free moving colloids, to relate previous observations at the pore scale to a larger scale. The colloids used in these experiments were bacteriophage MS2 (0.025 mum), and 0.05- and 3-mum spherical polystyrene beads, and were compared with a conservative nonsorbing tracer (KCl). The results show that early breakthrough of colloids increases with colloid size and water velocity, compared with the tracer. These results are in line with our previous observations at the pore scale that indicated that larger colloids are restricted by the size exclusion effect from sampling all paths, and therefore they tend to disperse less and move in the faster streamlines, if they are not filtered out. The measured macroscopic dispersion coefficient decreases with colloid size due to the preferential flow paths, as observed at the pore scale. Dispersivity, typically considered only a property of the medium, is in this case also a function of colloid size, in particular at low Peclet numbers due to the size exclusion effect. Other parameters for colloid transport, such as collector efficiency and colloid filtration rates, were also estimated from the experimental breakthrough curve using a numerical fitting routine. In general, we found that the estimated filtration parameters follow the clean bed filtration model, although with a lower filtration efficiency overall.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据