4.8 Article

Single-nucleotide-specific PNA-peptide ligation on synthetic and PCR DNA templates

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 126, 期 32, 页码 9970-9981

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja048845o

关键词

-

向作者/读者索取更多资源

DNA-directed chemical synthesis has matured into a useful tool with applications such as fabrication of defined (nano)molecular architectures, evolution of amplifiable small-molecule libraries, and nucleic acid detection. Most commonly, chemical methods were used to join oligonucleotides under the control of a DNA or RNA template. The full potential of chemical ligation reactions can be uncovered when nonnatural oligonucleotide analogues that can provide new opportunities such as increased stability, DNA affinity, hybridization selectivity, and/or ease and accuracy of detection are employed. It is shown that peptide nucleic acid (PNA) conjugates, nonionic biostable DNA analogues, allowed the fashioning of highly chemoselective and sequence-selective peptide ligation methods. In particular, PNA-mediated native chemical ligations proceed with sequence selectivities and ligation rates that reach those of ligase-catalyzed oligodeoxynucleotide reactions. Usually, sequence-specific ligations can only be achieved by employing short-length probes, which show DNA affinities that are too low to allow stable binding to target segments in large, double-stranded DNA. It is demonstrated that the PNA-based ligation chemistry allowed the development of a homogeneous system in which rapid single-base mutation analyses can be performed even on double-stranded PCR DNA templates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据