4.8 Article

Chemical remodelling of cell surfaces in living animals

期刊

NATURE
卷 430, 期 7002, 页码 873-877

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02791

关键词

-

向作者/读者索取更多资源

Cell surfaces are endowed with biological functionality designed to mediate extracellular communication. The cell-surface repertoire can be expanded to include abiotic functionality through the biosynthetic introduction of unnatural sugars into cellular glycans, a process termed metabolic oligosaccharide engineering(1,2). This technique has been exploited in fundamental studies of glycan-dependent cell-cell and virus-cell interactions(3-5) and also provides an avenue for the chemical remodelling of living cells(6-8). Unique chemical functional groups can be delivered to cell-surface glycans by metabolism of the corresponding unnatural precursor sugars. These functional groups can then undergo covalent reaction with exogenous agents bearing complementary functionality. The exquisite chemical selectivity required of this process is supplied by the Staudinger ligation of azides and phosphines, a reaction that has been performed on cultured cells without detriment to their physiology(7,9). Here we demonstrate that the Staudinger ligation can be executed in living animals, enabling the chemical modification of cells within their native environment. The ability to tag cell-surface glycans in vivo may enable therapeutic targeting and noninvasive imaging of changes in glycosylation during disease progression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据