4.5 Article

Estrogen attenuates neuronal excitability in the insular cortex following middle cerebral artery occlusion

期刊

BRAIN RESEARCH
卷 1018, 期 1, 页码 119-129

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2004.05.074

关键词

insular cortex; middle cerebral artery occlusion; ICI 182,780; amino acid; electrophysiology

资金

  1. Canadian Institutes of Health Research [50095] Funding Source: Medline

向作者/读者索取更多资源

The current investigation examined the role of estrogen in the insular cortex (IC) under both normal and ischemic conditions. Experiments were done in anaesthetized male Sprague-Dawley rats. The effect of systemic 17beta-estradiol (estrogen) administration on levels of amino acids and of endogenous estrogen obtained by microdialysis and its effect on neuronal activity of cells located in the insular cortex were measured in the absence of, and following permanent occlusion of, the right middle cerebral artery (MCA). In normal rats, intravenous (i.v.) injection of estrogen resulted in a significant increase (greater than 25 spikes/bin) in the spontaneous activity of neurons located within the insular cortex, while there was a significant decrease in gamma-aminobutyric acid (GABA) levels measured in IC dialysate. Middle cerebral artery occlusion (MCAO) resulted in a biphasic response consisting of a transient increase in the extracellular concentration of glutamate, aspartate, and GABA, followed by sustained elevations in glutamate and aspartate, but reduced GABA levels 4 h post-MCAO. MCAO also resulted in a significant increase in neuronal activity in the IC (from 28 +/- 9 to 120 +/- 88 spikes/bin). This MCAO-induced excitation was completely blocked following the prior intravenous administration of estrogen. Systemic estrogen administration also resulted in a delay in the progression and decrease in the final infarct volume by approximately 56%. Taken together, these results suggest that under normal conditions, estrogen excites neurons in the insular cortex by decreasing GABA release (disinhibition) and it plays a role in attenuating the MCAO-induced excitability and death of these neurons. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据