4.5 Article

Mechanical properties of single motor molecules studied by three-dimensional thermal force probing in optical tweezers

期刊

CHEMPHYSCHEM
卷 5, 期 8, 页码 1150-1158

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.200301027

关键词

mechanical properties; molecular motors; optical tweezers; single-molecule studies; thermal fluctuations

向作者/读者索取更多资源

A new method combining three-dimensional (3D) force measurements in an optical trap with the analysis of thermally induced (Brownian) position fluctuations of a trapped probe was used to investigate the mechanical properties of a single molecule, the molecular motor kinesin. One kinesin molecule attached to the probe was bound in a rigorlike state to one microtubule. The optical trap was kept weak to measure the thermal forces acting on the probe, which were mainly counterbalanced by the kinesin tether. The stiffness of kinesin during stretching and compression with respect to its backbone axis were measured. Our results indicate that a section of kinesin close to the motor domain is the dominating element in the flexibility of the motor structure. The experiments demonstrate the power of 3D thermal fluctuation analysis to characterize mechanical properties of individual motor proteins and indicate its usefulness to study single molecule in general.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据