4.6 Article

Platelet-derived growth factor stimulates membrane lipid synthesis through activation of phosphatidylinositol 3-kinase and sterol regulatory element-binding proteins

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 34, 页码 35392-35402

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M405924200

关键词

-

向作者/读者索取更多资源

We analyzed the transcriptional program elicited by stimulation of normal human fibroblasts with platelet-derived growth factor (PDGF) using cDNA microarrays. 103 significantly regulated transcripts that had not been previously linked to PDGF signaling were identified. Among them, a cluster of genes involved in fatty acid and cholesterol biosynthesis, including stearoyl-CoA desaturase (SCD), fatty acid synthase, and hydroxymethylglutaryl-CoA synthase (HMGCS), was up-regulated by PDGF after 24 h of treatment, and their expression correlated with increased membrane lipid production. These genes are known to be controlled by sterol regulatory element-binding proteins (SREBP). PDGF increased the amount of mature SREBP-1 and regulated the promoters of SCD and HMGCS in an SREBP-dependent manner. In line with these results, blocking SREBP processing by addition of 25-hydroxycholesterol blunted the effects of PDGF on lipogenic enzymes. SREBP activation was dependent on the phosphatidylinositol 3-kinase (PI3K) pathway, as judged from the effects of the inhibitor LY294002 and mutation of the PDGFbeta receptor tyrosines that bind the PI3K adaptor subunit p85. Fibroblast growth factors (FGF-2 and FGF-4) and other growth factors mimicked the effects of PDGF on NIH3T3 and human fibroblasts. In conclusion, our results suggest that growth factors induce membrane lipid synthesis via the activation SREBP and PI3K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据