4.6 Article

Bacteriostatic properties of biomatrices against common orthopaedic pathogens

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2004.06.165

关键词

biomatrices; bacteriostatic; orthopaedic; tissue-engineering; collagen; hydroxyapatite; hyaluronic acid; PLGA

向作者/读者索取更多资源

Tissue-engineered grafts for tissue regeneration include either mature or progenitor cells seeded onto biomatrices that provide shape and support for developing tissue. Popular biomaterials used in orthopaedic surgery include collagen type I, hyaluronic acid, hydroxyapatite, and polylactic polyglycolic acid (PLGA). Biomatrices with bacteriostatic properties may be beneficial in promoting tissue-engineered graft survival in patients susceptible to infection. We evaluated the bacteriostatic effects of these biomaterials on the growth of the four most common orthopaedic bacterial pathogens: Staphylococcus aureus, Staphylococcus epidermidis, beta-hemolytic Streptococcus, and Pseudomonas aeruginosa. Hyaluronic acid demonstrated the largest bacteriostatic effect on these pathogens by inhibiting bacterial growth by an average of 76.8% (p = 0.0005). Hydroxyapatite and collagen inhibited growth on average by 49.7% (p = 0.011) and 37.5% (p = 0.102), respectively. PLGA exhibited the least bacteriostasis with an average inhibition of 9.8% (NS) and actually accelerated the growth of beta-hemolytic Streptococcus and P. aeruginosa. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据