4.6 Article

Insulin resistance due to phosphorylation of insulin receptor substrate-1 at Serine 302

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 34, 页码 35298-35305

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M405203200

关键词

-

资金

  1. NIDDK NIH HHS [DK43123, DK63225, DK36836, DK09393, DK45943] Funding Source: Medline

向作者/读者索取更多资源

Inhibitory serine phosphorylation is a potential molecular mechanism for insulin resistance. We have developed a new variant of the yeast two-hybrid method, referred to as disruptive yeast tri-hybrid (Y3H), to identify inhibitory kinases and sites of phosphorylation in insulin receptors (IR) and IR substrates, IRS-1. Using IR and IRS-1 as bait and prey, respectively, and c-Jun NH2-terminal kinase (JNK1) as the disruptor, we now show that phosphorylation of IRS-1 Ser-307, a previously identified site, is necessary but not sufficient for JNK1-mediated disruption of IR/IRS-1 binding. We further identify a new phosphorylation site, Ser-302, and show that this too is necessary for JNK1-mediated disruption. Seven additional kinases potentially linked to insulin resistance similarly block IR/IRS-1 binding in the disruptive Y3H, but through distinct Ser-302- and Ser-307-independent mechanisms. Phosphospecific antibodies that recognize sequences surrounding Ser(P)-302 or Ser(P)-307 were used to determine whether the sites were phosphorylated under relevant conditions. Phosphorylation was promoted at both sites in Fao hepatoma cells by reagents known to promote Ser/Thr phosphorylation, including the phorbol ester phorbol 12-myristate 13-acetate, anisomycin, calyculin A, and insulin. The antibodies further showed that Ser(P)-302 and Ser(P)-307 are increased in animal models of obesity and insulin resistance, including genetically obese ob/ob mice, diet-induced obesity, and upon induction of hyperinsulinemia. These findings demonstrate that phosphorylation at both Ser-302 and Ser-307 is necessary for JNK1-mediated inhibition of the IR/IRS-1 interaction and that Ser-302 and Ser-307 are phosphorylated in parallel in cultured cells and in vivo under conditions that lead to insulin resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据