4.7 Article

Probing dark matter haloes with satellite kinematics

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2004.08021.x

关键词

methods : statistical; galaxies : fundamental parameters; galaxies : haloes; galaxies : kinematics and dynamics; galaxies : structure; dark matter

向作者/读者索取更多资源

Using detailed mock galaxy redshift surveys (MGRSs) we investigate to what extent the kinematics of large samples of satellite galaxies extracted from flux-limited surveys can be used to constrain halo masses. Unlike previous studies, which focused only on satellites around relatively isolated host galaxies, we try to recover the average velocity dispersion of satellite galaxies in all haloes, as a function of the luminosity of the host galaxy. We show that previous host-satellite selection criteria (SC) yield relatively large fractions of interlopers and with a velocity distribution that, contrary to what has been assumed in the past, differs strongly from uniform. We show that with an iterative, adaptive selection criterion one can obtain large samples of hosts and satellites, with strongly reduced interloper fractions, that allow an accurate measurement of sigma (sat)(L-host) over 2.5 orders of magnitude in host luminosity. We use the conditional luminosity function (CLF) to make predictions and show that satellite weighting, which occurs naturally when stacking many host-satellite pairs to increase the signal-to-noise ratio, introduces a bias towards higher sat sigma (sat)(L-host) compared to the true, host-averaged mean. A further bias, in the same direction, is introduced when using flux-limited, rather than volume-limited, surveys. We apply our adaptive selection criterion to the Two Degree Field Galaxy Redshift Survey (2dFGRS) and obtain a sample of 12 569 satellite galaxies and 8132 host galaxies. We show that the kinematics of these satellite galaxies are in excellent agreement with the predictions based on the CLF, after taking account of the various biases. We thus conclude that there is independent dynamical evidence to support the mass-to-light ratios predicted by the CLF formalism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据