4.8 Article

An aminoacyl-tRNA synthetase that specifically activates pyrrolysine

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0405362101

关键词

-

向作者/读者索取更多资源

Pyrrolysine, the 22nd cotranslationally inserted amino acid, was found in the Methanosarcina barkeri monomethylamine methyltransferase protein in a position that is encoded by an in-frame UAG stop codon in the mRNA. M. barkeri encodes a special amber suppressor tRNA (tRNA(Pyl)) that presumably recognizes this UAG codon. It was reported that Lys-tRNA(Pyl) can be formed by the aminoacyl-tRNA synthetase-like M. barkeri protein PylS [Srinivasan, G., James, C. M. & Krzycki, J. A. (2002) Science 296,1459-1462], whereas a later article showed that Lys-tRNA(Pyl) is synthesized by the combined action of LysRS1 and LysRS2, the two different M. barkeri lysyl-tRNA synthetases. Pyrrolysyl-tRNA(Pyl) formation was presumed to result from subsequent modification of lysine attached to tRNA(Pyl). To investigate whether pyrrolysine can be directly attached to tRNA(Pyl) we chemically synthesized pyrrolysine. We show that PylS is a specialized aminoacyl-tRNA synthetase for charging pyrrolysine to tRNA(Pyl); lysine and tRNA(Lys) are not substrates of the enzyme. in view of the properties of PylS we propose to name this enzyme pyrrolysyl-tRNA synthetase. In contrast, the LysRS1:LysRS2 complex does not recognize pyrrolysine and charges tRNA(Pyl) with lysine. These in vitro data suggest that Methanosarcina cells have two pathways for acylating the suppressor tRNA(Pyl). This would ensure efficient translation of the in-frame UAG codon in case of pyrrolysine deficiency and safeguard the biosynthesis of the proteins whose genes contain this special codon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据