4.8 Article

A tagging-via-substrate technology for detection and proteomics of farnesylated proteins

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0403413101

关键词

-

资金

  1. NCI NIH HHS [CA 41996, CA 85146, U01 CA085146, R01 CA041996, CA32737, P01 CA032737] Funding Source: Medline
  2. NIGMS NIH HHS [GM 56372, GM 31278, R01 GM031278] Funding Source: Medline

向作者/读者索取更多资源

A recently developed proteomics strategy, designated tagging-via-substrate (TAS) approach, is described for the detection and proteomic analysis of farnesylated proteins. TAS technology involves metabolic incorporation of a synthetic azido-farnesyl analog and chemoselective derivatization of azido-farnesyl-modified proteins by an elegant version of Staudinger reaction, pioneered by the Bertozzi group, using a biotinylated phosphine capture reagent. The resulting protein conjugates can be specifically detected and/or affinity-purified by streptavidin-linked horseradish peroxidase or agarose beads, respectively. Thus, the technology enables global profiling of farnesylated proteins by enriching farnesylated proteins and reducing the complexity of farnesylation subproteome. Azido-farnesylated proteins maintain the properties of protein farnesylation, including promoting membrane association, Ras-dependent mitogen-activated protein kinase kinase activation, and inhibition of lovastatin-induced apoptosis. A proteomic analysis of farnesylated proteins by TAS technology revealed 18 farnesylated proteins, including those with potentially novel farnesylation motifs, suggesting that future use of this method is likely to yield novel insight into protein farnesylation. TAS technology can be extended to other posttranslational modifications, such as geranylgeranylation and myristoylation, thus providing powerful tools for detection, quantification, and proteomic analysis of posttranslationally modified proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据