4.8 Article

Optimizing saccharide-directed molecular delivery to biological receptors:: Design, synthesis, and biological evaluation of glycodendrimer -: Cyclodextrin conjugates

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 126, 期 33, 页码 10355-10363

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja047864v

关键词

-

向作者/读者索取更多资源

Dendritic beta-cyclodextrin (betaCD) derivatives bearing multivalent mannosyl ligands have been prepared and assessed for their binding efficiency toward the tetrameric plant lectin concanavalin A (Con A) and a mammalian mannose/fucose specific cell surface receptor from macrophages. The synthetic strategy exploits the reactivity between isothiocyanate and amine functionalities for the high-yielding assembly via thioureido links of the various building blocks, including host, spacer, branching, and carbohydrate ligand elements. The methodology has been applied to the preparation of a series of betaCD-polymannoside scaffolds differing in the ligand valency and geometry. This series allowed us to explore: (i) The effects of the glycodendritic architecture on the binding efficiency; (ii) the mutual influence between the cyclodextrin core and the glycodendritic moieties on the molecular inclusion and lectin-binding properties; and (iii) the consequence of inclusion complex formation, using the anticancer drug docetaxel (Taxotere) as a target guest, on biological recognition. Our results confirm the high drug solubilization capability of this new type of betaCD-dendrimer construct and indicate that subtle changes in the architecture of the conjugate may have important consequences on receptor affinity. Interestingly, the host-guest interaction can be monitored to build up supramolecular dynamic glycoclusters with increased lectin affinity. Alternatively, the information obtained from the structure-lectin-binding avidity-inclusion capability studies has been put forward in the design of very efficient molecular transporters for docetaxel based on glycodendritic CD dimers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据