4.6 Article

Self-aggregation in pyrrole:: Matrix isolation, solid state infrared spectroscopy, and DFT study

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 108, 期 34, 页码 6953-6967

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp048118f

关键词

-

向作者/读者索取更多资源

Pyrrole (C4H5N) was embedded in low-temperature solid inert matrixes (argon, xenon; T = 9 K) and both the monomer and low-order aggregates characterized by FTIR spectroscopy. The spectroscopic studies were complemented by extensive theoretical [DFr(B3LYP)/6-311++G(d,p)] structural and vibrational studies carried out for the monomer and their self-aggregates (up to four units). The calculated spectrum for monomeric pyrrole fits well those obtained immediately after deposition (at 9 K) of diluted matrixes, which can be prepared keeping the compound at low temperature before deposition and using low fluxes of the sublimate. Annealing of the matrixes to higher temperatures or increasing of the gaseous flux during deposition leads to aggregation, which can be easily recognized spectroscopically. On the basis of the theoretically predicted spectra for the monomer, dimer, trimers, and tetramers of pyrrole, assignments were proposed for the experimentally observed bands. It was also found that the formation of the hydrogen-bonded clusters shows a significant cooperativity effect, which was studied in detail and could be related with several structural and spectroscopic parameters. Infrared spectra of the pure solid compound at low temperatures in both amorphous and crystalline states were also studied and interpreted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据