4.6 Article

Phosphorylation-independent dimer-dimer interactions by the enhancer-binding activator NtrC of Escherichia coli -: A third function for the C-terminal domain

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 35, 页码 36708-36714

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M405205200

关键词

-

资金

  1. NIGMS NIH HHS [GM 47965] Funding Source: Medline

向作者/读者索取更多资源

The response regulator NtrC transcriptionally activates genes of the nitrogen-regulated (Ntr) response. Phosphorylation of its N-terminal receiver domain stimulates an essential oligomerization of the central domain. Deletion of the central domain reduces, but does not eliminate, intermolecular interactions as assessed by cooperative binding to DNA. To analyze the structural determinants and function of this central domain-independent as well as phosphorylation-independent oligomerization, we randomly mutagenized DNA coding for an NtrC without its central domain and isolated strains containing NtrC with defective phosphorylation-independent cooperative binding. The alterations were primarily localized to helix B of the C-terminal domain. Site-specific mutagenesis that altered surface residues of helix B confirmed this localization. The purified NtrC variants, with or without the central domain, were specifically defective in phosphorylation-independent cooperative DNA binding and had little defect, if any, on other functions, such as noncooperative DNA binding. We propose that this region forms an oligomerization interface. Full-length NtrC variants did not efficiently repress the glnA-ntrBC operon when NtrC was not phosphorylated, which suggests that phosphorylation-independent cooperative binding sets the basal level for glutamine synthetase and the regulators of the Ntr response. The NtrC variants in these cells generally, but not always, supported wild-type growth in nitrogen-limited media and wild-type activation of a variety of Ntr genes. We discuss the differences and similarities between the NtrC C-terminal domain and the homologous Fis, which is also capable of intermolecular interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据