4.6 Article Proceedings Paper

Protein hydration dynamics in solution: a critical survey

出版社

ROYAL SOC
DOI: 10.1098/rstb.2004.1499

关键词

magnetic relaxation dispersion; nuclear Overhauser effect; dynamic Stokes shift; dielectric relaxation; protein hydrodynamics; water dynamics

类别

向作者/读者索取更多资源

The properties of water in biological systems have been studied for well over a century by a wide range of physical techniques, but progress has been slow and erratic. Protein hydration-the perturbation of water structure and dynamics by the protein surface-has been a particularly rich source of controversy and confusion. Our aim here is to critically examine central concepts in the description of protein hydration, and to assess the experimental basis for the current view of protein hydration, with the focus on dynamic aspects. Recent oxygen-17 magnetic relaxation dispersion (MRD) experiments have shown that the vast majority of water molecules in the protein hydration layer suffer a mere twofold dynamic retardation compared with bulk water. The high mobility of hydration water ensures that all thermally activated processes at the protein-water interface, such as binding, recognition and catalysis, can proceed at high rates. The MRD-derived picture of a highly mobile hydration layer is consistent with recent molecular dynamics simulations, but is incompatible with results deduced from intermolecular nuclear Overhauser effect spectroscopy, dielectric relaxation and fluorescence spectroscopy. It is also inconsistent with the common view of hydration effects on protein hydrodynamics. Here, we show how these discrepancies can be resolved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据