4.7 Article

Solving a dynamic virtual cell formation problem by linear programming embedded particle swarm optimization algorithm

期刊

APPLIED SOFT COMPUTING
卷 11, 期 3, 页码 3160-3169

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2010.12.018

关键词

Dynamic virtual cell formation; Production planning; Particle swarm optimization; Simulated annealing; Linear programming

向作者/读者索取更多资源

In this paper, a new mathematical model for virtual cell formation problem (VCFP) under condition of multi-period planning horizon is presented where the product mix and demand are different in each period, but they are deterministic moreover production planning decisions are incorporated. The advantages of the proposed model are as follows: considering operation sequence, alternative process plans for part types, machine time-capacity, lot splitting, maximal virtual cell size and balanced workload for virtual cells. The objective of the model is to determine the optimal number of virtual cells while minimizing the manufacturing, material handling, subcontracting, inventory holding and internal production costs in each period. The proposed model for real-world instances cannot be solved optimally within a reasonable amount of computational time. Thus, an efficient linear programming embedded particle swarm optimization algorithm with a simulated annealing-based local search engine (LPEPSO-SA) is proposed for solving it. This model is solved optimally by the LINGO software then the optimal solution is compared with the proposed algorithm. (C) 2010 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据