4.8 Article

Coherent excitation transport in metal-nanoparticle chains

向作者/读者索取更多资源

Electromagnetic energy transport in chains of noncontacting metal nanoparticles is studied within an exactly solvable model. The transport is mediated by the retarded electromagnetic interactions between plasmons confined to the individual nanoparticles and therefore self-consistently accounts for spontaneous emission on the same footing as the transport; the propagating hybrid plasmonic-electromagnetic modes of the chain are known as plasmon polaritons. Dark modes are found in the first Brillouin zone when the excitation wavelength is greater than the resonant optical wavelength, suggesting the possibility of the suppression of radiative losses. Nearest-neighbor tight-binding models are shown to be of limited validity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据