4.7 Article

In vitro synthesis of (1→3)-β-D-glucan (callose) and cellulose by detergent extracts of membranes from cell suspension cultures of hybrid aspen

期刊

CELLULOSE
卷 11, 期 3-4, 页码 313-327

出版社

SPRINGER
DOI: 10.1023/B:CELL.0000046404.25406.19

关键词

(1 -> 3)-beta-D-glucan (callose) and cellulose synthases; hybrid aspen (Populus tremula x tremuloides); in vitro synthesis of callose and cellulose; plant cell walls; suspension cultures

向作者/读者索取更多资源

The aim of this work was to optimize the conditions for in vitro synthesis of (1 --> 3)-beta-D-glucan (callose) and cellulose, using detergent extracts of membranes from hybrid aspen (Populus tremula x tremuloides) cells grown as suspension cultures. Callose was the only product synthesized when CHAPS extracts were used as a source of enzyme. The optimal reaction mixture for callose synthesis contained 100 mM Mops buffer pH 7.0, 1 mM UDP-glucose, 8 mM Ca2+, and 20 mM cellobiose. The use of digitonin to extract the membrane-bound proteins was required for cellulose synthesis. Yields as high as 50% of the total in vitro products were obtained when cells were harvested in the stationary phase of the growth curve, callose being the other product. The optimal mixture for cellulose synthesis consisted of 100 mM Mops buffer pH 7.0, 1 mM UDP-glucose, 1 mM Ca2+, 8 mM Mg2+, and 20 mM cellobiose. The in vitro beta-glucans were identified by hydrolysis of radioactive products, using specific enzymes. C-13-Nuclear magnetic resonance spectroscopy and transmission electron microscopy were also used for callose characterization. The (1-->3)-beta-D-glucan systematically had a microfibrillar morphology, but the size and organization of the microfibrils were affected by the nature of the detergent used for enzyme extraction. The discussion of the results is included in a short review of the field that also compares the data obtained with those available in the literature. The results presented show that the hybrid aspen is a promising model for in vitro studies on callose and cellulose synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据