4.4 Article

Green tea (Camellia sinensis) extract does not alter cytochrome P450 3A4 or 2D6 activity in healthy volunteers

期刊

DRUG METABOLISM AND DISPOSITION
卷 32, 期 9, 页码 906-908

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.104.000083

关键词

-

资金

  1. NCCIH NIH HHS [R21 AT00511] Funding Source: Medline
  2. NCRR NIH HHS [M01 RR01070-18] Funding Source: Medline

向作者/读者索取更多资源

Green tea extract is a widely used dietary supplement. The objective of this study was to assess the influence of a decaffeinated green tea (DGT; Camellia sinensis) extract on the activity of the drug-metabolizing enzymes cytochrome P-450 2D6 and 3A4. Probe drugs dextromethorphan (30 mg, CYP2D6 activity) and alprazolam (ALPZ; 2 mg, CYP3A4 activity) were administered orally to healthy volunteers (n = 11) at baseline, and again after treatment with four DGT capsules/day for 14 days. Each DGT capsule contained 211 +/- 25 mg of green tea catechins and < 1 mg of caffeine. Dextromethorphan metabolic ratios (DMRs) and alprazolam pharmacokinetics were determined at baseline and after DGT treatment. There were no significant differences in ALPZ pharmacokinetics at baseline and after DGT treatment (all P values >= 0.05; maximum concentration in plasma, 33 +/- 8 versus 34 +/- 13 ng/ml; time to reach maximum concentration in plasma, 1.4 +/- 1.2 versus 1.4 +/- 1.2 h; area under the plasma concentration versus time curve, 480 +/- 119 versus 510 +/- 107 h . ng . ml(-1); half-life of elimination, 12.3 +/- 1.7 versus 13.1 +/- 3.4 h). The DMR was 0.053 +/- 0.045 at baseline and 0.041 +/- 0.032 after DGT supplementation (P > 0.05). The plasma concentration of the green tea flavonoid, (-)-epigallocatechin gallate, reached 1.3 +/- 1.8 muM 2 h after DGT treatment. Our results indicate that DGT is unlikely to alter the disposition of medications primarily dependent on the CYP2D6 or CYP3A4 pathways of metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据