4.5 Article

Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements?

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 207, 期 20, 页码 3545-3558

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.01177

关键词

locomotion; physiology; mechanical energy; work; ground force; gait; Canis familiaris

类别

资金

  1. NIAMS NIH HHS [AR44688, AR44008] Funding Source: Medline

向作者/读者索取更多资源

Walking involves a cyclic exchange of gravitational potential energy and kinetic energy of the center of mass. Our goal was to understand how the limbs of walking quadrupeds coordinate the vertical movements of the fore and hind quarters to produce these inverted pendulum-like movements. We collected kinematic and ground reaction force data from dogs walking over a range of speeds. We found that the fore and hind quarters of dogs behaved like two independent bipeds, each vaulting up and over its respective support limb. The center of mass moved up and down twice per stride, like a single walking biped, and up to 70% of the mechanical energy required to lift and accelerate the center of mass was recovered via the inverted pendulum mechanism. To understand how the limbs produce these center of mass movements, we created a simple model of two independent pendulums representing the movements of the fore and hind quarters. The model predicted that the fore and hind quarter movements would completely offset each other if the fore limb lagged the hind limb by 25% of the stride time and body mass was distributed equally between the fore and hind quarters. The primary reason that dogs did not walk with a flat trajectory of the center of mass was that each fore limb lagged its ipsilateral hind limb by only 15% of the stride time and thereby produced time periods when the fore and hind quarters moved up or down simultaneously. The secondary reason was that the fore limbs supported 63% of body mass. Consistent with these experimental results, the two-pendulum model predicts that the center of mass will undergo two fluctuations per stride cycle if limb phase is less than 25% and/or if the total mass is not distributed evenly between the fore or hind quarters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据