4.4 Article

Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 15, 期 9, 页码 4191-4202

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E04-05-0412

关键词

-

资金

  1. NIGMS NIH HHS [GM-37049, R01 GM037049] Funding Source: Medline

向作者/读者索取更多资源

The Tup1-Ssn6 complex has been well characterized as a Saccharomyces cerevisiae general transcriptional repressor with functionally conserved homologues in metazoans. These homologues are essential for cell differentiation and many other developmental processes. The mechanism of repression of all of these proteins remains poorly understood. Srb10 (a cyclin-dependent kinase associated with the Mediator complex) and Hda1 (a class I histone deacetylase) have each been implicated in Tup1-mediated repression. We present a statistically based genome-wide analysis that reveals that Hda1 partially represses roughly 30% of Tup1-repressed genes, whereas Srb10 kinase activity contributes to the repression of similar to15% of Tup1-repressed genes. These effects only partially overlap, suggesting that different Tup1-repression mechanisms predominate at different promoters. We also demonstrate a distinction between histone deacetylation and transcriptional repression. In an HDA1 deletion, many Tup1-repressed genes are hyperacetylated at lysine 18 of histone H3, yet are not derepressed, indicating deacetylation alone is not sufficient to repress most Tup1-controlled genes. In a strain lacking both Srb10 and Hda1 functions, more than half of the Tup1-repressed genes are still repressed, suggesting that Tup1-mediated repression occurs by multiple, partially overlapping mechanisms, at least one of which is unknown.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据