4.2 Article

Host ecology determines the relative fitness of virus genotypes in mixed-genotype nucleopolyhedrovirus infections

期刊

JOURNAL OF EVOLUTIONARY BIOLOGY
卷 17, 期 5, 页码 1018-1025

出版社

WILEY
DOI: 10.1111/j.1420-9101.2004.00750.x

关键词

competition; differential selection; fitness; host ecology; mixed infection; nucleopolyhedrovirus; Panolis flammea; pathogen; resource partitioning; virulence

向作者/读者索取更多资源

Mixed-genotype infections are common in many natural host-parasite interactions. Classical kin-selection models predict that single-genotype infections can exploit host resources prudently to maximize fitness, but that selection favours rapid exploitation when co-infecting genotypes share limited host resources. However, theory has outpaced evidence: we require empirical studies of pathogen genotypes that naturally co-infect hosts. Do genotypes actually compete within hosts? Can host ecology affect the outcome of co-infection? We posed both questions by comparing traits of infections in which two baculovirus genotypes were fed to hosts alongside inocula of the same or a different genotype. The host, Panolis flammea, is a herbivore of Pinus sylvestris and Pi. contorta. The pathogen, PfNPV (a nucleopolyhedrovirus), occurs naturally as mixtures of genotypes that differ, when isolated, in pathogenicity, speed of kill and yield. Single-genotype infection traits failed to predict the 'winning' genotypes in co-infections. Co-infections infected and caused lethal disease in more hosts, and produced high yields, relative to single-genotype infections. The need to share with nonkin did not cause fitness costs to either genotype. In fact, in hosts feeding on Pi. sylvestris, one genotype gained increased yields in mixed-genotype infections. These results are discussed in relation to theory surrounding adaptive responses to competition with nonkin for limited resources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据