4.4 Article

Shared forces of sex chromosome evolution in haploid-mating and diploid-mating organisms:: Microbotryum violaceum and other model organisms

期刊

GENETICS
卷 168, 期 1, 页码 141-146

出版社

GENETICS
DOI: 10.1534/genetics.104.029900

关键词

-

向作者/读者索取更多资源

It is usually posited that the most important factors contributing to sex chromosome evolution in diploids are the suppression of meiotic recombination and the asymmetry that results from one chromosome (the Y) being permanently heterozygous and the other (the X) being homozygous in half of the individuals involved in mating. To distinguish between the roles of these two factors, it would be valuable to compare sex chromosomes in diploid-mating organisms and organisms where mating compatibility is determined in the haploid stage. In this latter group, no such asymmetry occurs because the sex chromosomes are equally heterozygous. Here we show in the fungus Microbotryum violaceum that the chromosomes carrying the mating-type locus, and thus determining haploid-mating compatibility, are rich in transposable elements, dimorphic in size, and carry unequal densities of functional genes. Through analysis of available complete genome, we also show that M. violaceum is, remarkably, more similar to humans and mice than to yeast, nematodes, or fruit flies with regard to the differential accumulation of transposable elements in the chromosomes determining mating compatibility vs. the autosomes. We conclude that restricted recombination, rather than asymmetrical sheltering, hemizygosity, or dosage compensation, is sufficient to account for the common sex chromosome characteristics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据