4.3 Article

Investigation of defect properties in Cu(In,Ga)Se2 solar cells by deep-level transient spectroscopy

期刊

SOLID-STATE ELECTRONICS
卷 48, 期 9, 页码 1579-1586

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.sse.2004.03.005

关键词

-

向作者/读者索取更多资源

The performance of the chatcopyrite material Cu(In,Ga)Se-2 (CIGS) used as an absorber layer in thin-film photovoltaic devices is significantly affected by the presence of native defects. The deep-level transient spectroscopy (DLTS) technique is used in this work to characterize the defect properties, yielding relevant information about the defect types, their capture cross-sections, and energy levels and densities in the CIGS cells. Three solar cells developed using different absorber growth technologies were analyzed using DLTS, capacitance-voltage (C-V), and capacitance-temperature (C-T) techniques. It was found that CIS cells grown at the University of Florida exhibits a middle-gap defect level that may relate to the cell's low fill factor and open-circuit voltage values observed. A high efficiency (eta(c) > 18%) CIGS cell produced by the National Renewable Energy Laboratory (NREL) was found to contain three minority-carrier (electron) traps and a 13% CIGS cell produced by the Energy Photovoltaics Inc. (EPV) exhibited one majority (hole) trap. The approach followed using the DLTS technique serves as a paradigm for revealing the presence of significant defect levels in absorber materials, and may be used to support the identification of remedial processing operations. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据