4.6 Article

Capturing oscillator injection locking via nonlinear phase-domain macromodels

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMTT.2004.834579

关键词

Adler; circuit simulation; differential equations; injection locking; nonlinear macromodels; oscillator phase response

向作者/读者索取更多资源

Injection locking is a nonlinear dynamical phenomenon that is often exploited in electronic and optical oscillator design. Behavioral modeling techniques for oscillators that predict this phenomenon accurately are of significant scientific and practical importance. In this paper, we propose a nonlinear approach for generating small phase-domain oscillator/voltage-controlled oscillator (VCO) macromodels that capture injection locking well. Our nonlinear phase-domain macromodels are closely related to recent oscillator phase noise and jitter theories, and can be extracted efficiently by algorithm from SPICE-level descriptions of any oscillator or VCO. Using LC and ring oscillators as test cases, we confirm the ability of nonlinear phase macromodels to capture injection locking, and also obtain significant computational speedups over full SPICE-level circuit simulation. Furthermore, we show that our approach is equally effective for capturing the dynamics of transition to locking, including unlocked tones and phase jump phenomena.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据