4.7 Article

Density-functional theory for the structures and thermodynamic properties of highly asymmetric electrolyte and neutral component mixtures

期刊

PHYSICAL REVIEW E
卷 70, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.70.031109

关键词

-

向作者/读者索取更多资源

Density-functional theory (DFT) is applied to investigate the structural and thermodynamic properties of concentrated electrolyte and neutral component mixtures that are highly asymmetric in terms of both size and charge mimicking a crowded cellular environment. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The direct correlation functions are obtained from the analytical solutions of the mean-spherical approximation. In the context of a primitive model where biomacromolecules are represented by neutral or charged hard spheres and the solvent is represented by a continuous dielectric medium, this DFT is able to take into account both the excluded-volume effects and the long-ranged electrostatic interactions quantitatively. The performance of the theoretical method has been tested with Monte Carlo simulation results from this work and from the literature for the pair correlation functions, excess internal energies, and osmotic coefficients for a wide variety of aqueous dispersions of charged and neutral particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据