4.6 Article

Ideal shear strain of metals and ceramics

期刊

PHYSICAL REVIEW B
卷 70, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.70.104104

关键词

-

向作者/读者索取更多资源

Using density functional theory we analyze the stress-strain responses of 22 simple metals and ceramics to determine the maximum shear strain a homogeneous crystal can withstand, a property for which we suggest the name shearability. A shearability gap is found between metals and covalent ceramics. Shearability of metals further correlates with the degree of valence charge localization and directional bonding. Depending on the deformation constraints, ionic solids may possess even larger shearability than covalent solids. The Frenkel model of ideal shear strength works well for both metals and ceramics when shearability is used in the scaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据