4.6 Article

Variability of intraoperative electrocortical stimulation mapping parameters across and within individuals

期刊

JOURNAL OF NEUROSURGERY
卷 101, 期 3, 页码 458-466

出版社

AMER ASSOC NEUROLOGICAL SURGEONS
DOI: 10.3171/jns.2004.101.3.0458

关键词

brain mapping; cortical stimulation; eloquent cortex

资金

  1. NCRR NIH HHS [RR00865, RR12169] Funding Source: Medline
  2. NIGMS NIH HHS [GM08042] Funding Source: Medline
  3. NIMH NIH HHS [MH/NS52083] Funding Source: Medline

向作者/读者索取更多资源

Object. Electrocortical stimulation mapping is regarded as the gold standard of intraoperative mapping for predicting functional outcomes. Nevertheless, methodologies across institutions are inconsistent. Although many vary and maximize stimulation currents at each cortical site, some use a single current level to map the entire exposed cortex. The former comes at the cost of possibly inducing additional afterdischarge activity. The authors retrospectively reviewed their experience with intraoperative electrocortical stimulation mapping to characterize variability of both mapping and afterdischarge thresholds. Methods. Seventeen patients satisfied the study inclusion criteria. Significant variability in mapping thresholds was identified within individuals and across the patient population. Moreover, a statistically significant difference in mapping thresholds was demonstrated between the frontal and parietal/temporal lobes (p = 0.007, one-way analysis of variance). The authors report a surprisingly high incidence of afterdischarge during mapping, wide variability in afterdischarge thresholds within individuals and across the study population, and mapping thresholds regularly exceeding afterdischarge thresholds in neighboring cortex. Differences in afterdischarge thresholds across lobes only approached significance (p = 0.086). Conclusions. To maximize identification of eloquent cortices in some clinical situations, it may be advantageous to maximize currents at each cortical site regardless of adjacent afterdischarge threshold rather than to map the entire exposed cortex at a single current level. Moreover, the current findings highlight the need for electrocorticography during electrocortical stimulation mapping, both to identify when afterdischarges occur and to verify stimulation by recording stimulation artifacts. The advantages and limitations of maximizing currents at each cortical site as well as mapping at a single current level are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据