4.5 Review

Excitatory amino acid induced oligodendrocyte cell death in vitro:: receptor-dependent and -independent mechanisms

期刊

JOURNAL OF NEUROCHEMISTRY
卷 90, 期 5, 页码 1173-1185

出版社

WILEY
DOI: 10.1111/j.1471-4159.2004.02584.x

关键词

excitotoxicity; glutamate; mitogen-activated protein kinase; oligodendrocytes; oxidative stress; phosphorylation

向作者/读者索取更多资源

Oligodendroglia play an important role in axonal conduction in the CNS and are sensitive to oxidative toxicity induced by glutamate in the absence of ionotropic glutamate receptors. In this study, oligodendrocyte signalling cascades were examined, in response to glutamate-induced oxidative injury and to excitotoxicity. Rat cortical oligodendrocytes, differentiated in culture, were highly vulnerable to glutamate-induced cell death. Competitive inhibition of cystine uptake and increased oxidative stress appeared responsible for this death, and caused an accumulation of intracellular peroxides as well as chromatin fragmentation and condensation. Glutamate receptor subtype agonists (quisqualate, ibotenate) known to inhibit cystine uptake were cytotoxic, but not NMDA itself; moreover, glutamate receptor antagonists were not protective. Oligodendrocytes were also vulnerable to overactivation of glutamate receptors, as kainic acid and AMPA proved to be toxic. AMPA toxicity required the presence of cyclothiazide, suggesting rapid desensitization of AMPA receptors. Glutamate-induced oxidative stress and kainate/AMPA receptor stimulation activated the mitogen-activated protein kinase (MAP kinase) pathway, as well as the transcription factor ELK. However, MAP kinase kinase inhibitors only protected against injury from glutamate-induced oxidative stress. Oligodendrocytes were sensitive to oxygen-glucose deprivation injury as well, in a MAP kinase dependent fashion. Glutamate toxicity may conceivably be operative in neuropathological conditions that disrupt neuronal/oligodendrocyte interactions in axons, e.g. multiple sclerosis and ischaemia-reperfusion injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据