4.3 Article

Evaluation of the relative stability of liganded versus ligand-free protein conformations using simplicial neighborhood analysis of protein packing (SNAPP) method

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/prot.20131

关键词

Delaunay tessellation; periplasmic binding proteins; conformational stability change; differential SNAPP profile analysis; ligand binding

资金

  1. NIGMS NIH HHS [R01 GM068665, R01 GM068665-04] Funding Source: Medline

向作者/读者索取更多资源

Many proteins change their conformation upon ligand binding. For instance, bacterial periplasmic binding proteins (bPBPs), which transport nutrients into the cytoplasm, generally consist of two globular domains connected by strands, forming a hinge. During ligand binding, hinge motion changes the conformation from the open to the closed form. Both forms can be crystallized without a ligand, suggesting that the energy difference between them is small. We applied Simplicial Neighborhood Analysis of Protein Packing (SNAPP) as a method to evaluate the relative stability of open and closed forms in bPBPs. Using united residue representation of amino acids, SNAPP performs Delaunay tessellation of the protein, producing an aggregate of space-filling, irregular tetrahedra with nearest neighbor residues at the vertices. The SNAPP statistical scoring function is derived from log-likelihood scores for all possible quadruplet compositions of amino acids found in a representative subset of the Protein Data Bank, and the sum of the scores for a given protein provides the total SNAPP score. Results of scoring for bPBPs suggest that in most cases, the unliganded form is more stable than the liganded form, and this conclusion is corroborated by similar observations of other proteins undergoing conformation changes upon binding their ligands. The results of these studies suggest that the SNAPP method can be used to predict the relative stability of accessible protein conformations. Furthermore, the SNAPP method allows delineation of the role of individual residues in protein stabilization, thereby providing new testable hypotheses for rational site-directed mutagenesis in the context of protein engineering. (C) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据