4.3 Article

Genotoxic effects of strong static magnetic fields in DNA-repair defective mutants of Drosophila melanogaster

期刊

JOURNAL OF RADIATION RESEARCH
卷 45, 期 3, 页码 393-397

出版社

OXFORD UNIV PRESS
DOI: 10.1269/jrr.45.393

关键词

-

向作者/读者索取更多资源

To assess the possibility that strong static magnetic fields cause DNA damage and mutation, we examined the genotoxic effects of magnetic field exposure by using the somatic mutation and recombination test system in DNA repair-proficient and -deficient strains of Drosophila melanogaster. A postreplication repair-defective mutation mei-41(D5) and/or a nucleotide excision repair-defective mutation mei-9degrees was introduced into the conventional loss of the heterozygosity assay system by the use of mwh +/ + flr transheterozygotes, and were exposed to static magnetic fields of up to 14 Tesla (T). We found that exposure to 2, 5, or 14 T fields for 24 h caused a statistically significant enhancement in somatic recombination frequency in the postreplication repair-deficient flies, whereas the frequency remained unchanged in the nucleotide excision repair-deficient flies and in the DNA repair-proficient flies after exposure. An increase linearly dependent on the flux density was observed between 0.5 T and 2 T, but it was saturated at exposure levels over 2 T. These findings suggest that exposure to high-density magnetic fields induce somatic recombination in Drosophila and that the dose-response relationship is not linear.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据