4.6 Article

Deep-level transient spectroscopy on an amorphous InGaZnO4 Schottky diode

期刊

APPLIED PHYSICS LETTERS
卷 104, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4867236

关键词

-

资金

  1. European Community [FP7-ICT-2009-4, 247798]

向作者/读者索取更多资源

The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier electrode and with a molybdenum (Mo) Ohmic contact at the top. The DLTS technique allows to independently measure the energy and spatial distribution of subgap states in the IGZO thin film. The subgap trap concentration has a double exponential distribution as a function energy, with a value of similar to 10(19) cm(-3) eV(-1) at the conduction band edge and a value of similar to 10(17) cm(-3) eV(-1) at an energy of 0.55 eV below the conduction band. Such spectral distribution, however, is not uniform through the semiconductor film. The spatial distribution of subgap states correlates well with the background doping density distribution in the semiconductor, which increases towards the Ohmic Mo contact, suggesting that these two properties share the same physical origin. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据