4.7 Article

A numerical study on the fluid flow and heat transfer around a circular cylinder in an aligned magnetic field

期刊

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
卷 47, 期 19-20, 页码 4075-4087

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2004.05.015

关键词

-

向作者/读者索取更多资源

The present study numerically investigates two-dimensional laminar fluid flow and heat transfer past a circular cylinder in an aligned magnetic field using the spectral method to insure the accuracy of results. For the purpose of controlling vortex shedding and heat transfer, numerical simulations to calculate the fluid flow and beat transfer past a circular cylinder are performed for different Reynolds numbers of 100 and 200 and for different Prandtl numbers of 0.02 (liquid metal), 0.7 (air) and 7 (water) in the range of 0 less than or equal to N less than or equal to 10, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow and thermal quantities on the cylinder surface at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the wake becomes weaker and the oscillating amplitude of lift coefficient decreases. The flow and thermal fields become the steady state if the Stuart number is greater than the critical value, which depends on the Reynolds number. Thus the drag and lift coefficients and Nusselt number representing the fluid flow and heat transfer characteristics also vary as a function of Stuart number. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据