4.6 Article

Phosphorylation by protein kinase CK2 modulates the activity of the ATP binding cassette A1 transporter

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 36, 页码 37779-37788

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M401821200

关键词

-

向作者/读者索取更多资源

In a previous characterization of the ABCA subfamily of the ATP-binding cassette (ABC) transporters, we identified potential protein kinase 2 (CK2) phosphorylation sites, which are conserved in eukaryotic and prokaryotic members of the ABCA transporters (Peelman, F., Labeur, C., Vanloo, B., Roosbeek, S., Devaud, C., Duverger, N., Denefle, P., Rosier, M., Vandekerckhove, J., and Rosseneu, M. ( 2003) J. Mol. Biol. 325, 259 - 274). These phosphorylation residues are located in the conserved cytoplamic R1 and R2 domains, downstream of the nucleotide binding domains NBD1 and NBD2. To study the possible regulation of the ABCA1 transporter by CK2, we expressed the recombinant cytoplasmic domains of ABCA1, NBD1 + R1 and NBD2 + R2. We demonstrated that in vitro ABCA1 NBD1 + R1, and not NBD2 + R2, is phosphorylated by CK2, and we identified Thr-1242, Thr-1243, and Ser-1255 as the phosphorylated residues in the R1 domain by mass spectrometry. We further investigated the functional significance of the threonine and serine phosphorylation sites in NBD1 by site-directed mutagenesis of the entire ABCA1 followed by transfection into Hek-293 Tet-Off cells. The ABCA1 flippase activity, apolipoprotein AI and AII binding, and cellular phospholipid and cholesterol efflux were enhanced by mutations preventing CK2 phosphorylation of the threonine and serine residues. This was confirmed by the effect of specific protein kinase CK2 inhibitors upon the activity of wild type and mutant ABCA1 in transfected Hek-293 Tet-Off cells. The activities of the mutants mimicking threonine phosphorylation were close to that of wild type ABCA1. Our data, therefore, suggest that besides protein kinase A and C, protein kinase CK2 might play an important role in vivo in regulating the function and transport activity of ABCA1 and possibly of other members of the ABCA subfamily.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据