4.6 Article

Effect of interwire separation on growth kinetics and properties of site-selective GaAs nanowires

期刊

APPLIED PHYSICS LETTERS
卷 105, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4891427

关键词

-

资金

  1. Marie Curie FP7 Reintegration Grant
  2. EU FP7 project SOLID
  3. DFG excellence program Nanosystems Initiative Munich
  4. collaborative research center [SFB 631]
  5. Technische Universitat Munchen, Institute for Advanced Study via the German Excellence Initiative

向作者/读者索取更多资源

We report tuning of the growth kinetics, geometry, and properties of autocatalytic GaAs nanowires (NW) by precisely controlling their density on SiO2-mask patterned Si (111) substrates using selective area molecular beam epitaxy. Using patterned substrates with different mask opening size (40-120 nm) and pitch (0.25-3 mu m), we find that the NW geometry (length, diameter) is independent of the opening size, in contrast to non-catalytic GaAs NWs, whereas the NW geometry strongly depends on pitch, i.e., interwire separation and NW density. In particular, two distinct growth regimes are identified: a diffusion-limited regime for large pitches (low NW density) and a competitive growth regime for smaller pitches (high NW density), where axial and radial NW growth rates are reduced. The transition between these two regimes is significantly influenced by the growth conditions and shifts to smaller pitches with increasing As/Ga flux ratio. Ultimately, the pitch-dependent changes in growth kinetics lead to distinctly different photoluminescence properties, highlighting that mask template design is a very critical parameter for tuning intrinsic NW properties. (c) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据