4.4 Article

Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp PCC 6803

期刊

BIOCHEMISTRY
卷 43, 期 35, 页码 11321-11330

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi036178q

关键词

-

向作者/读者索取更多资源

Singlet oxygen, generated during photosynthesis, is a strong oxidant that can, potentially, damage various molecules of biological importance. We investigated the effects in vivo of singlet oxygen on the photodamage to photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. Increases in intracellular concentrations of singlet oxygen, caused by the presence of photosensitizers, such as rose bengal and ethyl eosin, stimulated the apparent photodamage to PSII. However, actual photodamage to PSII, as assessed in the presence of chloramphenicol, was unaffected by the production of singlet oxygen. These observations suggest that singlet oxygen produced by added photo sensitizers acts by inhibiting the repair of photodamaged PSII. Labeling of proteins in vivo revealed that singlet oxygen inhibited the synthesis of proteins de novo and, in particular, the synthesis of the D1 protein. Northern blotting analysis indicated that the accumulation of psbA mRNAs, which encode the D1 protein, was unaffected by the production of singlet oxygen. Subcellular localization of polysomes with bound psbA mRNAs suggested that the primary target of singlet oxygen might be the elongation step of translation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据