4.8 Article

Coherent dynamics of a flux qubit coupled to a harmonic oscillator

期刊

NATURE
卷 431, 期 7005, 页码 159-162

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02831

关键词

-

向作者/读者索取更多资源

In the emerging field of quantum computation(1) and quantum information, superconducting devices are promising candidates for the implementation of solid-state quantum bits (qubits). Single-qubit operations(2-6), direct coupling between two qubits(7-10) and the realization of a quantum gate(11) have been reported. However, complex manipulation of entangled states-such as the coupling of a two-level system to a quantum harmonic oscillator, as demonstrated in ion/atom-trap experiments(12,13) and cavity quantum electrodynamics(14)-has yet to be achieved for superconducting devices. Here we demonstrate entanglement between a superconducting flux qubit (a two-level system) and a superconducting quantum interference device (SQUID). The latter provides the measurement system for detecting the quantum states; it is also an effective inductance that, in parallel with an external shunt capacitance, acts as a harmonic oscillator. We achieve generation and control of the entangled state by performing microwave spectroscopy and detecting the resultant Rabi oscillations of the coupled system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据