4.8 Article

Polymer blends used for the aqueous coating of solid dosage forms: importance of the type of plasticizer

期刊

JOURNAL OF CONTROLLED RELEASE
卷 99, 期 1, 页码 1-13

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2004.05.011

关键词

polymer blend; plasticizer; coating; release mechanism; aqueous dispersion; pellets

向作者/读者索取更多资源

The aim of this study was to investigate the importance of the type of plasticizer in polymer blends used for the coating of solid dosage forms, comparing a lipophilic and a hydrophilic plasticizer (dibutyl sebacate (DBS) and triethyl citrate (TEC)). In vitro drug release from propranolol hydrochloride (propranolol HCl)-loaded pellets coated with blends of ethyl cellulose (EC) and Eudragit(R) L (100:0, 75:25, 50:50, 25:75 and 0: 100 w/w) was investigated at low as well as at high pH. To better understand the underlying mass transport mechanisms, the physicochemical properties of the film coatings (e.g. mechanical resistance, water uptake and dry weight loss behavior) were determined. Interestingly, drug release strongly depended on the type of plasticizer. Importantly, not only the slope but also the shape of the release curves was affected, indicating that the chemical nature of the plasticizer plays a major role for the underlying drug release mechanisms. Diffusion through the intact polymer coatings and/or through water-filled cracks was found to be dominating for the control of drug release. The relative importance of these pathways strongly depended on the polymer blend ratio and type of plasticizer. In contrast to DBS, TEC rapidly leached out of the coatings, resulting in decreasing mechanical resistances of the films and, thus, facilitated crack formation. In addition, the hydrophilicity of the plasticizer significantly affected the water uptake behavior of the film coatings and, hence, changes in the coatings' toughness and drug permeability. Also the relative affinity of the plasticizer to the different polymers was found to be of significance. In contrast to TEC, DBS has a higher affinity to EC than to Eudragit(R) L, resulting in potential redistributions of this plasticizer within the polymeric systems and changes in the release profiles during storage. Importantly, these effects could be avoided with appropriate curing conditions and preparation techniques for the coating dispersions. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据