4.7 Article

Charge renormalization of charged spheres based on thermodynamic properties

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 121, 期 11, 页码 5494-5504

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1782431

关键词

-

向作者/读者索取更多资源

At strong electrostatic coupling, counterions are accumulated in the vicinity of the surface of the charged particle with intrinsic charge Z. In order to explain the behavior of highly charged particles, effective charge Z(*) is therefore invoked in the models based on Debye-Huckel approximation, such as the Derjaguin-Landau-Verwey-Overbeek potential. For a salt-free colloidal suspension, we perform Monte Carlo simulations to obtain various thermodynamic properties omega in a spherical Wigner-Seitz cell. The effect of dielectric discontinuity is examined. We show that at the same particle volume fraction, counterions around a highly charged sphere with Z may display the same value of omega as those around a weakly charged sphere with Z(*), i.e., omega(Z)=omega(Z(*)). There exists a maximally attainable value of omega at which Z=Z(*). Defining Z(*) as the effective charge, we find that the effective charge passes through a maximum and declines again due to ion-ion correlation as the number of counterions is increased. The effective charge is even smaller if one adopts the Debye-Huckel expression omega(DH). Our results suggest that charge renormalization can be performed by chemical potential, which may be observed in osmotic pressure measurements. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据