4.7 Article

SuperWIMP gravitino dark matter from slepton and sneutrino decays

期刊

PHYSICAL REVIEW D
卷 70, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.70.063514

关键词

-

向作者/读者索取更多资源

Dark matter may be composed of superWIMPs, superweakly-interacting massive particles produced in the late decays of other particles. We focus on the case of gravitinos produced in the late decays of sleptons or sneutrinos and assume they are produced in sufficient numbers to constitute all of nonbaryonic dark matter. At leading order, these late decays are two-body and the accompanying energy is electromagnetic. For natural weak-scale parameters, these decays have been shown to satisfy bounds from Big Bang nucleosynthesis and the cosmic microwave background. However, sleptons and sneutrinos may also decay to three-body final states, producing hadronic energy, which is subject to even more stringent nucleosynthesis bounds. We determine the three-body branching fractions and the resulting hadronic energy release. We find that superWIMP gravitino dark matter is viable and determine the gravitino and slepton/sneutrino masses preferred by this solution to the dark matter problem. In passing, we note that hadronic constraints disfavor the possibility of superWIMPs produced by neutralino decays unless the neutralino is photinolike.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据